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Abstract—Exact solutions are calculated to two problems of non-steady heat flow in a cavity wall

structure. The first considers periodic heat flow applied as a regular sinusoidal variation in the ambient

temperature at the outside surface. The second examines transient flow in which the applied tempera-

ture condition is a single step~-function of time. In both cases the opposite or inside surface of the wall
is assumed to face a constant temperature enclosure.

INTRODUCTION

THE BOUNDARY CONDITIONS qualifying the flow of heat through the naturally exposed surfaces of
a building assume a variety of different-forms: rarely is the heat flux steady. A situation of practical
interest, especially in the air-conditioning of buildings, is that of a harmonic variation of the outside
ambient temperature combined with an indoor ambient temperature thermostatically controlled
at a fixed value. For rigorous analysis the complex boundary conditions created by natural exposure
have, perforce, to be simplified and a solution of the practical problem sought by examining an
idealized case having as close a similarity to the actual sitnation as the analysis will permit. In
settled weather the diurnal variation in the outside air temperature approximates to a regular wave
form and may be described as steady periodic. On other occasions the heat flow is more appro-
priately considered as transient. Analytical solutions for both forms of boundary domain applied
to an infinite plane slab of isotropic material are reported extensively in the literature [1, 2]. Little
attention has been given to obtaining the corresponding formal analytical solutions defining heat
flow in a cavity structure, although less exact methods of calculation have been devised. For example,
Mackey and Wright [3], following Shklover [4], apply the concept of an equivalent homogeneous
wall to obtain simple formulae for calculating steady periodic heat flow through composite structures.
The properties of the homogeneous solid equivalent to the composite assembly of different conduct-
ing media, airspaces included, are derived empirically from a correlative examination of results
calculated by more exact methods. A similar concept (“brick wall thickness of equivalent thermal
capacity’”) is described by Bruckmayer [5] based on a more fundamental treatment due to Esser
and Krischer [6] for calculating transient flow in multi-leaf walls. The application of matrix methods
commonly used in electric circuit theory also allows numerical values for steady periodic tempera-
tures in composite slabs to be calculated without difficulty [1].

Two heat conduction problems are solved below, using the Laplace transform method, to give
the temperature distribution in either leaf of a single-cavity construction; solutions for certain
other arrangements follow by taking limiting values of the parameters. The first case deals with
periodic heat flow applied as a sinusoidal variation in the ambient temperature at the outside
surface. The second examines transient flow in which the applied temperature condition is a single
step-function of time.
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The method of analysis follows that similarly applied by Pratt and Ball [7], and Choudhury and
Warsi [8] to the calculation of heat transmission in buildings though for other boundary conditions.

It is assumed that the heat flow is one-dimensional, and that the thermal properties, conductivity
k and diffusivity K, of each slab are independent of temperature 8, position x and time 7.

The prescribed boundary conditions refer to air temperature but this may be replaced, without
loss of generality, with equivalent temperature* for representing surface heat exchange more
conveniently in situations where the mean radiant temperature viewed by the surface is considered
to be significantly different from the true air temperature,

1. PERIODIC HEAT FLOW THROUGH A CAVITY WALL

Consider the infinite plane slab of thickness /1, thermal properties k; (conductivity), K (diffu-
sivity) representing the outer leaf, and thickness (/z — /1) of another, properties k2, K» representing
the inner leaf. A medium with thermal conductance & and negligible thermal capacity defines a
closed airspace of uniform width sandwiched between the two leaves. At the positions x = 0 and
x == I3 heat is transferred between the wall surface and air at the respective rates /g, #; times their
temperature difference. Initially the temperature differences throughout are zero. Subsequently
the ambient temperatures at x = 0 and x = /; are maintained at 6y sin wt and ; respectively. The
situation considered has the following mathematical formulation.

Differential equations

28, 06,
Kl-a‘}é(x,t):g(x,t), 0<x<l’i; t>0 (11)
820y 00
Kz—é}i(x,t)Z-a—t-(,\, H, h<x<lpt>0 (1.2)
Boundary conditions, t > 0
o6, .
—kla(x, t):h() {8037"”'—'91 (xa t)}a x=0 (13)
06y
~k15)~c(x, =h{f1(x, 1) —b(x, )}, x =11 (14
o0,
— ks a(x, D=h{{x, ) —~0(,Lx=h (1.5)
00
— ke () =k B2 (x, 1) — 0(D)},  x =1l (1.6)
Initial conditions
f1(x,00=0, 0 <x </ b

B2 (x, 00 =0, h <x<bh l
00 (O) = 0, X == /1
8 (0) =0, x =l

(1.7)

* Equivalent temperature is the ambient temperature (hypothetical) at a surfa_ce that .would give the same rate of
heat flow through the surface as exists with the actual air temperature and radiation environment.
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Applied temperature functions
=0, x=0 1t €0
=fsinwt, x=0, r>0
0; =0, x=10,t <0
’ =8, x=10l,t >0
Let 8, (x, p), (r = 1, 2), denote the Laplace transform of 4, (x, p), defined as

Be (x,p) = | €20, (x, 1) dt R(p)> 0
i}

Applying the Laplace transform procedure to equation (1.1) through (1.6) it is found that the
function 8 (x, p) satisfies the following subsidiary equations and boundary conditjons;

Transformed differential equations

dz2d
x;( X, p) — ;(x,p)=0, 0<x<h (1.8)
; p
e n 2l n =0 h<x<h 19
Transformed boundary conditions
dé 6 ] ’
L eI+ {G;—L—j Bl(x,p)} =0, x=0 (1.10)
df, _
a}(x-P)%*E O10,p) ~82(x,p)} =0, x=1 1.1y
dé h
GEDFE B —hxnp}=0  x=h (1.12)
dé 8,
T en+ w2 =0 x— b (13

Attention will be confined to obtaining a solution for the temperature at the position x = /3 after
a long time when the sum of transients involving the initial condition has died away.,
The system of equation (1.8) through (1.13) yields the result

b2 (12, p) = zi;/}K(zg; { cosh \/( )(fz - h) + f{ﬁi{% inh /( ) (o — h)} +
hol/(K1Kz) pbo + Wi (K1) Koy {\/P cosh J (f) I +

kike (p —iw) F(p) ~ kik3F(p) fo(p)
h"‘/Kls nh J(kﬂ) } (1.14)
hhiKs

5p =2 (p+ ) sinh () ta =10+ 201+ 0 v Y2 o [(2) 6 — 1y

where

(1.15)
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and

F(p) = (hoh + hhy + hohi) \/—ECISI;—KQ p cosh \/(%) I, cosh \/(é) (lo — ) +
hohKi  hhK
+p ( -+ Okzl + - 1222) sin h\/(%)hsinh\/(é)(k—h)—l—
{p (h + hi) + h"h”‘Kl} vk, +/p sinh J (7%) I1 cosh ,\/ (7%) (o — 1) +

{p (ho + ) + h°h}”K2} VK cosh J (%) I, sinh \/ (—1%) (e - I) (1.16)

The Laplace inversion of the expression for 82 (/s, p) gives the required solution as the sum of the
residues at the simple poles represented by p = 0 and p = iw. The form of the result is

1 | 1 ! Io — [
92(/2,1):02(12,t)w+51{1 . (h ot 1) } (1.17)
2

defining a steady-state temperature distribution through the wall upon which is superimposed a
steady periodic temperature function defined by

hho\/(Kle)eo etwt
kike {F(p)/p}p-iv

In manipulating equation (1.18) it is found convenient to rewrite the expression (1.16) for F(p)
so that

b2 (h, 1), = (1.18)

B o W+ a) (Vo + ) (Vp + TF @) ovon +
+ (VP —a)) (Wp —a) (Vp —a+ a) eV — (vp + a0) (Vp — @) (Vp +a — aD) e/ —
—(Wp—a)(Vp+ a) (Vp — a — a) eVPF} (1.19)
in which
ao»—ho \Zfl azh\ilfl
_h +(12—11) B__ll__(lz—ll)
* = VK vKy VK1 VK2

In (1.19), dropping the negligibly small term involving e~v?%, and making the substitutions as
indicated leads finally to a solution of the form

4ap a10p v/ sin (wt — ¢)
V/(G? + H?)

62 (o, 1), = (1.20)

where
tanyg = (H — G)/(H + G) (1.21)
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with
G = [4 cos a v/(w]2) — Bsin a v/{(w/2)]exvV(¥2 — [Ccos B v/(w]2) —
— Dssin 8 v/ (w/2)] e#V('® — [E cos B v/(w]2) -+ Fsin B 1/(w/2)] e—AV (/D

H = [Asin a v/(/2) + Bcos a v/(w/2)] e2V(#2) — [Csin B 4/(w/2) +
-+ D cos 8 v/(w]2)] eAV(2) 4 [Esin B 4/(w/2) — Fcos B v/(w[2)] e=AV(9/2) J

and,

(1.22)

= — w1/(0/2) + {(a + a1) (a0 + a2) + avaz} V(w/2) + (a + a1) avar

= V(@2) + (@0 + a + a1 + a2) o + {{@ + @) (a0 + a2) + avaz} V(w]2)
— w{(w/2) + {(a — a1) (@0 — a2) — apaz} V{(w[2) — (@ — a1) aoaz

@ V(@/2) + (a0 + a — a1 — a) o + {{a — a1) (a0 — a2) — aoaz} v/(w]2)
— o v (wf2) + {(a — a1) (a0 — az) — aoaz} v(w/2) + (a0 —a1) aoaz

= wA/(0/2) — (@ + a— a1 — @) o + {(a — a1) (@0 — a2) — aoaz} v/(w/2)

Two-layer wall

Equation (1.20) defines the steady cyclic temperature of the inside surface of a cavity wall facing
a constant indoor temperature and exposed to a regular sinusoidal variation in the ambient tempera-
ture at the outside surface. The corresponding solution for a solid wall consisting of two layers

(h, k1, K1) and (Jz — I, k2, K») follows immediately by putting 1/& = 0 in (1.20), giving
4ag 1/ wbo
V(G*+ H?)
where ¢, G and H are defined by the expressions in {1.21), (1.22) and the terms 4, ..., F now read

A = (ap + a2) (1 + b) V{(w/2) + avas (1 + b)

B = (a¢ + a2) (1 + b) V(w/2) + w (1 + b)

C = (a2 — ao) (1 — b) V(»/2) + aoaz (1 + b)

D = (az — ao) (1 — b) V(@/2) — w (1 — b)

E = (as — ag) (1 — b) V(w/2) — aeaz (1 — b)

F = (a2 —ao) (1 — b) V(w/2) + & (1 — b)
where, b = (k2/k1) v/ (K1/K3), and aqp, a2 are as defined above.

i

l

il

A
B
C
D
E
F

83 (Is, 1), = sin (wf — ) (1.23)

Numerical results

Calculated results of time-lag and amplitude ratio are given in Table 1 for a few cases selected
to indicate the order of comparison between a solid brick wall and cavity walls incorporating
brick and other material. The time-lag is defined as the interval between a sinusoidal variation in
the ambient temperature at the outside surface and the temperature variation at the inside surface.
The amplitude ratio measures the extent to which the simple harmonic variation in the outside
ambient temperature is attenuated in its passage through the wall to the inside surface. It is interest-
ing to note that the two alternative arrangements of such dissimilar materials as brick and timber
differ, for the thicknesses specified, by no more than 0-7 h in the time-lag due to a diurnal variation
of sinusoidal form in the outside ambient temperature. The difference will be even smaller for less
dissimilar materials. An attempt to reduce the amount of computational work involved has been
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Table 1. Calculated values of time-lag and amplitude ratio of solid and
cavity walls

Complete solution Ignoring 8 terms
Wall
(outside to inside) Time-lag ~ Amplitude  Time-lag  Amplitude
(h) ratio (h) ratio
4% in brick 3.7 0-324
44 in brick—cavity—
1 in timber 50 0-114 4-4 o112
1 in timber—cavity—
44 in brick 57 0093 4-8 0-081
44 in brick-cavity—
3 in aerated concrete 67 0-073 55 0-071

made by repeating the calculations omitting the two terms that involve the 8 quantity. In the few
cases examined the amplitude ratio is little changed by this approximation but the time-lag is
underestimated by a significant amount.

2. TRANSIENT HEAT FLOW THROUGH A CAVITY WALL

The wall structure considered is that described above, with one set of thermal properties (sub-
script 1) in the region 0 < x <C /; denoting the outer leaf, and a second set (subscript 2) in the
region /1 < x < Iz denoting the inner leaf. A closed airspace separates the two leaves. At x = 0,
x = [ heat is transferred between the environment and the outside and inside surfaces of the wall
at the respective rates Ao, #; times their temperature difference. For all values of time the ambient
temperature at the inside surface, x = /s, is held constant at 6;. Initially the system is in steady
state. Subsequently the ambient temperature at the outside surface, x = 0, undergoes a step-
function drop through 8y which is maintained indefinitely,

Stated formally it is required to calculate the temperature 8, (x, 1), (r = 1, 2) that satisfies the
following formulation:

Differential equations

6‘291 391
K1~é—;3(x, t):?t‘(x,t), 0<x<[1, >0 (2.])
020, &0z
K; ax? (x, 1) = P (x,1), h<x<b t>0 2.2)
Boundary conditions
af
ket 52 (6, 1) = oy (x, ), x=0, >0 2.3)
86,
kg (D) =h{b(x, )~ 01 (x, 1)}, x=h, (>0 2.4)
96y
ke () =h {02(x,0) = 01(x,0}, x=h, >0 2.5

o0
ko %5 (x, 1) = hi {6 — 02 (x, )}, x=10h t>0 (2.6)
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Initial conditions

(1/ho + x/k1)
0 — 6o)
(1/ho + hjky + 1/h + Iz — hjka + 1/h) l @

(61 — o)

1 (xa 0) =t +

(1/ho + hjkr + Uh 4+ x — hi/ks)
(1/ho + hjkr 4 1/h 4 Iz — h/ks + 1/hs)

02 (x, 0) = 00 +

Applied temperature functions
0o = 00, x=0 <0

=0, x=0, t>0
0 =0;, x=1~5b, allt
The method of solution follows that described above. An application of the Laplace transform
gives:
Transformed differential equations

(1/ho + x/k1)

(ko + kit h + o — ke & Uiy 0~ 00 =0 29

d2é
Ki gz (6 P) —phi(x,p) + b0 +

(L/ho + hjky 4 1/h + x — hke)
(L/ho + hjker + 1/h + f2 — Lifke + 1/h:)

dzé
Ko d—x: (x, p) — pba (x, p) + 6o + (i — 00) = 0. (2.9)

Transformed boundary equation
déy

k15 (% p) = hoby (%, p), x =0, (2.10)
dé, _ _

kg p)=h{b(xp) = b(x,p)}, x=h, (2.11)
s _

kegq; (6op)=h{6(x,p) — b1 (x,p)},  x=h, (2.12)
dé 0

ks 2 (5 p) =y {—p’ — b2 (x, p)}, x=1kh (2.13)

The solution of (2.8) and (2.9) subject to (2.10) through (2.13) is

61 (x,p) = — I—;,—(Ef—,? {cosh \/(%) (h— x)+ %v sinh \/(I%) (h — x)} -

- % {COSh \/(1%) x + % sinh J(%) x} {cosh J(%) (lo—1h) +

az P Ri(x) (8; — 80) = bo
+ '\7[; smh /\/(7(?2) (12 — ll)} + m ——p + ; N 0 < X << 11 (2.14)
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by (x, p) = — Z‘zﬁ“ {cosh J (1%) (o — x) + % sinh J (%) (o — x)} +

Rl.z(x) (01 — 30) 00
Rio 7 + 7’ h<x<lb (2.15)

+

where

JF(p) = +/psinh \/(%) 5 -+ (ao + a) cosh «/(1%) L+ f/—oz sinh J(%) 5
g(p) = (p + aoa + maz) sinh J (%) f sinh \/ (1‘?;) (o —h) +
+ {\/p (@1 + as) + “:‘/’;2} sinh J (%) I, cosh J (’kp;) (I — 1) +

n {\/p (@0 + a) + “"\‘?:2} cosh J (EPI) I, sinh \/ (1% ) (o — 1) +

+ (aoar + avaz -+ aas) cosh \/ (1%) 51 cosh \/ (f—) (lo — I).
1, Ko

VK1 VK VKs Vv Kz
a():k()“?(:—, a=~nh kl s dlzk“}‘g", azzhi kz
Ri(x) = ljho + x/ks, 0<x<]g

Ryo(x) = 1/ho + Lijk1 + 1/h + (x — Wk, h<x<l
Re.o = 1/ho + Iifkr + 1/h + (2 — DW)ka + 1/hg

The solution for the temperature distribution through the cavity wall is obtained from (2.14)
and (2.15) in the usual way using the inversion theorem. The integrands are single-valued functions

with simple polesatp = 0, p = — o, and at p = — 82, where o2, n = 1,2, ..., are the positive
roots of
deaa anl aoa1a ap{la — 1
{an (a1 + az) — —%72} tan -—\7"%1 4 {an (ag + a) — Oa:, 2} tan — (\j % ) +
! Io — [
+ {(aoa + aza2) — o2} tan j/"Kll tan = (\2/ e ) = apai + aoaz + aas (2.16)

and B, m = 1,2, ..., are the positive roots of

Bmll . (aﬂ -+ CZ) }gm

= . 2.17
K T B —aa 2.17)

t
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For the outer leaf, 0 < x < /1, ¢t >0

@0

R
01 (x,t) = R1(X) 0: + 2aobo z

m=1

(<08 B (1 — )/v/Ki + (@/Bm) $in Bin (L — X)//K1} exp [—B] AN
B 4 B + 2maat > x

{cos Bmx/v/K1 + (ao/Bm) sin Bmx/+/K1} {cos Bm (2 — h)/v/ Kz +
(a2/v/K2) sin Bm (I2 — h)/+/K2} exp [—f2, t]

B2{g(P) }o=—pm? - Y(Bm)

m=1

2apaaify E X
n=1

{cos anx/v/K1 + (ao/an) sin azx/v/ K1} {cos an (l2 — )/A/ K2 +
(az/v/Kz) sin an (l2 — h)[+/ K2} exp [—a}i] 2.18)

al {f(P)}p=—an? . ¢ (an)
For the inner leaf, h < x <l, t > 0

o (x, 1) = 2 gy
S ay (I2 — an) Sin agy (lo — K —a2
200(11602{008 (l2 X)/\/Kz+(ao¢/’(az)sm (lo — x)/v/Ka} exp [—ali] 2.19
where,

w3 (1% + ) i v+ v (1 )= i
$(an) = [{a} (a1 + a2) — avaaz} /K1 + {a} (a0 + a) — aomaz} (lz — N)/+/Kq] X
cos anl1/7/K1 . cos an (l2 — h)// K2 +
lan (a0 + @) + aoaraz/an + {an (a0a + @iaz) — a3} h/v/ K1 +
an (@oa1 + aoaz -+ aaz) (Io — h)/v/K2] cos axli/v/Ki . sin ap (I — I1)/7/K2 +
[ar (a1 + a2) + aoaas/an + {an (ava + a1a2) — o3} (lo — h)/\/Kz2 +
an (@oa1 + aoaz + aaz) i/A/Ki] sin agli/A/K1 . cos ay (ls — h)/v/Ka2 —
[2aZ 4+ {2 (a0 + a) — aoaraz} H/vVK1 + {a2 (@1 + a2) — avaaz} (I — h)//K3] X
sin axli/A/K1 . sinay (la — h) /Ko (2.20)
For practical purposes the particular solution 8z (/2, t) representing the temperature of the inside

surface of the wall facing the constant temperature room is the most interesting. From (2.19)

Ry.2(/ B —alt
Ba(la, 1) = }J( D 6, + 2a0a160 9’;—1211)—“"—} @.21)

n=1
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Numerical calculation of the exact solution (2.21) is lengthy due largely to the labour involved in
calculating the roots, a,, defined by (2.16). An approximate and more easily calculable solution for
f2(l2, t) may be obtained by writing g(p) as a polynomial with distinct zeros at p = —a?, —ai, .. .,
and representing this function as an infinite product of linear factors. The inversion L-1{8s(/2, p)}
then takes the form

L {by(lz, p)} =

Ri ol 2 aoa1bo(p + of) exp [—af 1]
1 2(2_)0 . Z i+ (2.22)

Ri.o pC 11 (1 4 play)
j=1

i=1

where

C = apay + acas + aas + avaash/v/ K1 + aoaras(ls — 1)/v/ Ko

Expanding g(p) as a polynomial in p to 0(p?) and inverting as indicated the solution for the tempera-
ture of the inside surface may be written approximately as

Ry.2(l2) aoa1by (aiexp[—aif] alexp[—alr]

Oa(lz, 1) ~ Rioo O + C ( ot — o - PP ) (2.23)
in which p = —a2, —a2 are the roots of g(p) expressed simply as a quadratic in p. In general,
a? > a?, so that for large values of ¢ equation (2.23) reduces to

Ry.o(l 6 —alt
Oolly, 1) ~ T2l g domboexp[—ait] (2.24)

Ri.o C

It can be shown that apa;/C simplifies to (1/h;)/R:.o; substituting this equivalent ratio of resistances
in (2.24) the approximate solution may now be re-written in the more convenient form

o — Oyl 1/h
(2, 0) — 0ol )  Mhe  o1—a2a), tlarge (2.25)
o Ri.o

Equation (2.25) expresses the drop in the temperature of the inside surface as a fraction of the step-
function change in the ambient temperature uniformly applied at the outside surface. The quantity
1/a2 will be recognized as the time taken for the fractional change in the surface temperature to
reach (1 — 1/e) or 63 per cent of the ultimate steady state value represented as (1/h) bo/R:.o;
1/a% may be defined therefore as the time-constant of the wall for the problem considered. Writing
g(p) as a linear function and isolating p it can be shown that

. 1 h (I — 1) 1 le—!— We Wi/l L—15h
“l*(é{Ww?ﬁWz % }*&.01 ik +71;(z+"/€r)+

Wa (1 h 17 L\2 Iz — I1\2 -1
WG s) ) (e ) (2:20)

where W1, Wy denote the respective heat capacities per unit area of the outer and inner leaves. The
result in (2.26) is an approximate expression enabling a? to be calculated more readily than by
graphical solution of the transcendental equation (2.15). The accuracy of the approximate method
may be assessed by comparing numerical results given by (2.24) and the exact solution (2.19).
Figure 1 shows the result of such a calculation applied to the case of an 11 in cavity wall of brick
(k1 = ko, K1 = Ko, = I — I, W1 = W) facing a constant temperature enclosure at the inside
surface and exposed at the outside surface to a sudden drop through 6y in the ambient temperature.
After an initial time interval the large difference between the results of the two methods begins to
decrease and at a value of 7 equal to the time constant for the cavity wall the approximate solution
agrees with the exact solution to within about 5 per cent. Thereafter the agreement is close.
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024

020 <

o6 /

o 014 7 63% level
o2 4

Approx. 4
solution \/

o8 7
A AR
e / Exact solution
e
[+ &

-
,-""

8,(¢,,00-8,(L, 1)

0l 10 10 100 1000

Fi1c. 1. Transient cooling of an 11 in cavity brick wall,

This result is worth consideration as providing possibly a simple method for comparing the transient
response of different wall structures by calculating the time constant. It may be noted that if the
boundary condition at the inside surface is changed from constant temperature to constant heat
flux the time constant for homogeneous and composite structures is simply the ratio (heat stored/
heat transmitted) in the steady state [7].

CONCLUSION

Analytical solutions have been obtained defining transient and periodic heat flow through walls
of cavity construction composed of two layers of material of dissimilar thermal properties separated
by a sealed airspace. The results may be used to calculate the flow of heat through walls naturally
exposed at one surface and facing a constant ambient temperature at the other. Solutions for homo-
geneous and two-layer walls are included. The use of these results may perhaps be extended to
include a three-layer solid wall in which a low thermal capacity slab of highly insulating material is
sandwiched between dense material. This particular form of wall construction is an important
feature of current developments in industrialized building.
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Résumé—On calcule les solutions exactes de deux problémes de flux de chaleur transitoire dans une

structure de paroi creuse. La premiére considére le flux de chaleur périodique appliqué comme une

variation sinusoidale réguliére de la température ambiante & la surface extérieure. La seconde examine

le flux transitoire dans lequel la condition de température appliquée est une fonction-échelon unique

du temps. Dans les deux cas, on suppose que les surfaces exposée ou intérieure de la paroi sont en
contact avec une enceinte a température constante.

Zusammenfassung—Fiir zwei Probleme des instationdren Wirmestromes in einer Wand mit rauher

Oberflache werden exakte Losungen berechnet. Die erste beriicksichtigt einen periodischen Wérme-

strom, der durch eine regelmissige sinusférmige Verdnderung in der Umgebungstemperatur an der

Aussenoberfliche aufgeprigt wird. Die zweite untersucht den momentanen Strom, fiir den die

aufgeprigte Temperatur eine einzelne Stufenfunktion der Zeit ist. In beiden Fillen wird angenommen,

dass die gegeniiberliegende bzw. die Innenoberfliche der Wand ein Gebiet konstanter Temperatur
darstellt.

AnRoramua—Ilo:yuensl TOYHbE pElIeHNA ABYX 3a7la4 0 HEeCTalMOHAPHOM TEIIOBOM NOTOKE

B CTeHKAaX MHOJOCTH. B IepBOi paccMarpuBaeTcd NepHOTMYECKMIT TENIOBOH IOTOK, BO3-

HUKAIOMUI TP CUHYCOUZATBHOM HM3MEHEHHM OKDY/KAlomed TeMIepaTypel HA HAPYKHOI

oBepxHOCTH. BO BTOPOHf PaccCMaTPMBAETCA HeyCTAHOBMBLIMHACH HOTOK, KOMJA TeMIEPATypa

NpefcTaBIAeT cOGON OfME CTYIeHYATHIA NMIYIbC BO BpeMeHn. B 060UMX CIyYaAx Ipeinoa-

TaeTCA, YTO MPOTHBONOJIOMKHAA WM BHYTDEHHAA INOBEPXHOCTh CTEHKH HAXOJUTCA HPH
MOCTOSIHHOI TeMmeparype.



