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VARIABLE HEAT FLOW THROUGH WALLS OF 
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A. W. PRATTt 

Department of Scientific and Industrial Research, Building Research Station, Watford, Herts. 
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Ah&act--Exact solutions are calculated to two problems of non-steady heat flow in a cavity wall 
structure. The first considers periodic heat flow applied as a regular sinusoidal variation in the ambient 
temperature at the outside surface. The second examines transient flow in which the applied tempera- 
ture condition is a single step-function of time. In both cases the opposite or inside surface of the wall 

is assumed to face a constant temperature enclosure. 

INTRODUCTION 

THE BOUNDARY CONDITIONS qualifying the flow of heat through the naturally exposed surfaces of 
a building assume a variety of different forms: rarely is the heat flux steady. A situation of practical 
interest, especially in the air-conditioning of buildings, is that of a harmonic variation of the outside 
ambient temperature combined with an indoor ambient temperature thermostatically controlled 
at a fixed value. For rigorous analysis the complex boundary conditions created by natural exposure 
have, perforce, to be simplified and a solution of the practical problem sought by examining an 
idealized case having as close a similarity to the actual situation as the analysis will permit. In 
settled weather the diurnal variation in the outside air temperature approximates to a regular wave 
form and may be described as steady periodic. On other occasions the heat flow is more appro- 
priately considered as transient. Analytical solutions for both forms of boundary domain applied 
to an infinite plane slab of isotropic material are reported extensively in the literature [l, 21. Little 
attention has been given to obtaining the corresponding formal analytical solutions defining heat 
flow in a cavity structure, although less exact methods of calculation have been devised. For example, 
Mackey and Wright [3], following Shklover [4], apply the concept of an equivalent homogeneous 
wall to obtain simple formulae for calculating steady periodic heat flow through composite structures. 
The properties of the homogeneous solid equivalent to the composite assembly of different conduct- 
ing media, airspaces included, are derived empirically from a correlative examination of results 
calculated by more exact methods. A similar concept (“brick wall thickness of equivalent thermal 
capacity”) is described by Bruckmayer [5] based on a more fundamental treatment due to Esser 
and Krischer [6] for calculating transient flow in multi-leaf walls. The application of matrix methods 
commonly used in electric circuit theory also allows numerical values for steady periodic tempera- 
tures in composite slabs to be calculated without difficulty [I]. 

Two heat conduction problems are solved below, using the Laplace transform method, to give 
the temperature distribution in either leaf of a single-cavity construction; solutions for certain 
other arrangements follow by taking limiting values of the parameters. The first case deals with 
periodic heat flow applied as a sinusoidal variation in the ambient temperature at the outside 
surface. The second examines transient flow in which the applied temperature condition is a single 
step-function of time. 
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The 
Warsi 

method of analysis follows that similarly applied by Pratt and Ball [7], and Choudhury and 
[83 to the calculation of heat transmission in buildings though for other boundary conditions. 

It is assumed that the heat flow is one-dimensional, and that the thermal properties, conductivity 
k and diffusivity K, of each sIab are independent of temperature 8, position x and time t. 

The prescribed boundary conditions refer to air temperature but this may be replaced, without 
loss of generality, with equivalent temperature * for representing surface heat exchange more 
conveniently in situations where the mean radiant temperature viewed by the surface is considered 
to be significantly different from the true air temperature. 

1. PERIODIC HEAT FLOW THROUGH A CAVITY WALL 

Consider the infnrite plane slab of thickness h, thermal properties ki (conductivity), Ki (diffu- 
sivity) representing the outer leaf, and thickness (12 - Zr) of another, properties kz, KZ representing 
the inner leaf. A medium with thermal conductance h and negligible thermal capacity defines a 
closed airspace of uniform width sandwiched between the two leaves. At the positions x = 0 and 
x = is heat is transferred between the wall surface and air at the respective rates ho, hi times their 
temperature difference. Initially the temperature differences throughout are zero. Subsequently 
the ambient temperatures at x = 0 and x = ZZ are maintained at 60 sin wt and @i respectively. The 
situation considered has the following mathematical formulation. 

Differential equations 

~~~(~,t)=~(~,t), O<X<I& t>O (1.1) 

K2 g (x, t) = 2 (x, t), II < x < 12, t > 0 (1.2) 

boundary cund~tio~s, t > 0 

- kl 2 (x, t) = ho {& eiUt - 81 (x, t)), x = 0 (1.3) 

- kl - (x, t) = h (81 (x, t) - @e (X, t)>, X = h 
3X 

- ka ;;(x, t) = 8% {@l (xx, tf - 82 (x, t)), .x = II 

(1.4) 

(1.5) 

- ka f$(x, t) = hi (02 (x, t) - O,(t)}, x = 12 

rnitial conditions 

(1.6) 

* Equivalent temperature is the ambient temperature (hypothetical) at a surface that would give the same rate of 
heat flow through the surface as exists with the actual air temperature and radiation environment. 
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Applied temperature functions 

e. = 0, x = 0, t g 0 

= e. sin fk, x = 0, t > 0 
ei = 0, x = i2, t G 0 

= t?$, x = 12, t > 0 

Let S, (s, p), (r = I, 2), denote the Laplace transform of 8, (x, p), defined as 

8, (x, p) = “f e-pt f3,. (x, t) dt R(p) > 0 
0 

Applying the Laplace transform procedure to equation (1.1) through (1.6) it is found that the 
function 8, (x, p) satisfies the following subsidiary equations and boundary conditions; 

~ransfarmed dl~erent~a~ e~aat~a~s 

de81 Pdl 
-&vj (x, P) - z 6% PI = 0, 0 < x < II (1.8) 

Trun+ormed boundary conditions 

-&(x,p) =O, x=0 
> 

(1.9) 

(1.10) 

x = 11 (1.11) 

(1.12) 

(1.13) 

Attention will be confined to obtaining a solution for the temperature at the position x = 1s after 
a long time when the sum of transients involving the initial condition has died away. 

The system of equation (1.8) through (1.13) yields the result 

where 

!i(P) = 2 

+ ‘p sinh J(g) k} (1.14) 

‘~)sinh J($- (h - h) + 2 @ f hi) l/p $$ cash J(g2) (1% - II> 

(1.15) 
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and 

F(P) = @oh + hhl + hohr ) y/(W@ 
klk2 pcosh2/~~)licoshJ(~)(iZ-li)+ 

+P Ps- 
i 

F + h~~sinh2ii~jhsinhJi~~(/2-h)+ 

+ 
{ 

p (h + hi) + ‘F 
1 > 

e ,sinh~(~)"cosh2/i~)(/2-(1)+ 

-+ P (ho + 4 + 'F] F z/p cash J(s) Ii sinh J(g) (1s - Ii) 
2 

(1.16) 

The Laplace inversion of the expression for 82 (Zs, p) gives the required solution as the sum of the 
residues at the simple poles represented by p = 0 and p = iw. The form of the result is 

defining a steady-state temperature distribution through the wall upon which is superimposed a 
steady periodic temperature function defined by 

In manipulating 
so that 

02 (h, t), = 
hhoz/(KlK2)00 eiWt 

klkz {J;(P)/P}~=L~ 
(1.18) 

equation (1.18) it is found convenient to rewrite the expression (1.16) for F(‘(p) 

F(P) -zz 
P 

Gp {(dp + a~) (dp + a2) (dp + a + 01) edpa + 

- + (l/p - ao)(z/p - ~2) (4~ -a+ de- 4~ - (dp + a0>(2/P - a2) (dp + a - al)e@ - 

- (4~ - a~> (l/p 4 ~2) (dp - a - ~1) e-+P) (1.19) 

in which 

ul = h @ 
k2 ’ 

a2 = hi 9 

(I2 - 4 
a=-&+- 

11 (I2 - Zl) 

"==I- y/K2 

In (1.19), dropping the negligibly small term involving e-dpa, and making the substitutions as 
indicated leads finally to a solution of the form 

where 

62 u2, 0, = 
4~0 al60 2/w sin (wt - 4) 

1/(G2 + H2) 
(1.20) 

tan # = (H - G)/(H + G) (1.21) 
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with 

G = [A cos CC y’(w/2) - B sin a 2i(w/2)] ead(@‘2f - [C cos /3 5442) - 

- D sin ,9 1/(42)] efid(w’s) - [E cos p d(w/2) + F sin /3 y/(w/2)] e-fld(wi2) 

H = [A sin a 1/(w/2) + B cos a 4(w/2)] ea”t0’2) - [C sin fl l/(w/2) + 

+ D cos /I d(w/2)] epd(“‘s) + [E sin /3 d(w/2) - F cos /3 4(42)] e-bd(wi2) 

and, 

1 

(1.22) 

J 

A = - W l/(42) -t- ((a + al) (a0 + aa) + aoaz} 2/(42) + (a + 4 ala2 

B = w y/(42) + (ao + a + al + a2) w + ((a + ad (ao + a2) + aoazj ~442) 

c = - w (42) + {(a - al) (a0 - a2) - aoaz) y’(42) - (a - 4 aom 

D = w z/(42) + (uo + a - ar - a2) w + ((a - al) (uo - a2) - aoa2) ~(~~2) 

E = - w 2/(0/2) + ((a - al) (uo - a2) - aoaz) y/(0/2) + (GO -ad uouz 

F = w 2/(42) - (uo + u - al - ~2) w + ((a - ad (uo -_ a2) - aom> 1442) 

Two-layer wall 
Equation (1.20) defines the steady cyclic temperature of the inside surface of a cavity wall facing 

a constant indoor temperature and exposed to a regular sinusoidal variation in the ambient tempera- 
ture at the outside surface. The corresponding solution for a solid wall consisting of two layers 
(Zi, kr, Kr) and (1s - II, kz, KS) follows immediately by putting l/h = 0 in (1.20), giving 

4uo 2ffJJ@o 
(1.23) 

where $, G and Hare defined by the expressions in (1.21), (1.22) and the terms A, . . . , F now read 

A = (a0 + a2) (1 + b) y’(42) + aoa2 (1 + 4 

B = Go -t- 4 (1 + b) dW2) + w (1 + b) 

c = (a2 - ao) (1 - b) z/(4) + 110122 (1 + b) 

D = (az - ao) (1 - b) d/(42) - w (1 - 6) 

E = (02 - uo) (1 - b) z/@/2) - 4042 (1 - b) 

F = (a2 - uo) (1 - b) l/(42) + w (1 - b) 

where, b = (~2~~1) ~(~l~K2~, and ua, a2 are as defined above. 

Numerical rest&s 
Calculated results of time-lag and amplitude ratio are given in Table 1 for a few cases selected 

to indicate the order of comparison between a solid brick wall and cavity walls incorporating 
brick and other material. The time-lag is defined as the interval between a sinusoidal variation in 
the ambient temperature at the outside surface and the temperature variation at the inside surface. 
The amplitude ratio measures the extent to which the simple harmonic variation in the outside 
ambient temperature is attenuated in its passage through the wall to the inside surface. It is interest- 
ing to note that the two alternative arrangements of such dissimilar materials as brick and timber 
differ, for the thicknesses specified, by no more than O-7 h in the time-lag due to a diurnal variation 
of sinusoidal form in the outside ambient temperature. The difference will be even smaller for less 
dissimilar materials. An attempt to reduce the amount of computational work involved has been 



866 A. W. PRATT 

Table 1. Calculated u&es of time-lag and anlpljt~~ ratio of solid and 
ca0ity walls 

Wall 
(outside to inside) 

- 4t in brick 
41 in brick-cavity- 

1 in timber 
1 in timber-cavity- 

44 in brick 
46 in brick-cavity- 

3 in aerated concrete 

Complete solution 

Time-lag Amplitude 
(h) ratio 

_- 
3.7 0.324 

Ignoring j3 terms 

Time-lag Amplitude 
(h) ratio 

__- 

5.0 0.114 4,4 O-I 12 

5.7 0,093 4.8 0.081 

6.7 0.073 5.5 0.07 1 

made by repeating the calculations omitting the two terms that involve the @ quantity. In the few 
cases examined the amplitude ratio is little changed by this approximation but the time-lag is 
underestimated by a significant amount. 

2. TRANSIENT HEAT FLOW THROUGH A CAVITY WALL 

The wall structure considered is that described above, with one set of thermal properties (sub- 
script 1) in the region 0 < x < II denoting the outer leaf, and a second set (subscript 2) in the 
region jr < x -C Is denoting the inner leaf. A closed airspace separates the two leaves. At x = 0, 
x = 12 heat is transferred between the environment and the outside and inside surfaces of the wall 
at the respective rates ho, hr times their temperature difference. For all values of time the ambient 
temperature at the inside surface, x = R, is held constant at @a. Initially the system is in steady 
state. Subsequently the ambient temperature at the outside surface, x = 0, undergoes a step- 
function drop through 00 which is maintained indefinitely. 

Stated formally it is required to calculate the temperature ~9~ (x, t), (r = 1,2) that satisfies the 
following formulation : 

Differential eauations 

Kr t$ (x, t) = z (x, t), 0 < x < /I, t>O 

K;z, ;;; (x, t} = ‘$ (x, t), k < x < I2, t>O 

Eo~~dary eond~tiun~ 

ICI;; (x, t) = ho& (x, t), x = 0, t>O 

kl$(X, t) = h {h? (x, t) - &(x, f>>, x = 11, t>O 

k2.~~(.l:,t)=hiB2(x,t)-81(x,t)l, x==h, t>O 

x = Iz, t>O 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 
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Initial conditions 

” (x’ ‘) = ” + (l/ho + II/~ + l/h + 12 - Il/kz + l/ht) 
(0, - 00) 

(l/ho + h/k1 + l/h + x - Ill&) 
(2.7) 

” (xy ‘) = O” + (1 /ho + II/k1 + l/h + 12 - h/k2 + l/hr) (e4 - e”) J 

Applied temperature functions 

eo = 80, x = 0 t<O 

=o, x=0, t>O 
eg = ea, x = 12, all t 

The method of solution follows that described above. An application of the Laplace transform 
gives : 

TranTformed diflerential equations 

(l/ho + h/k1 + l/h + 12 - h/k2 + l/hi) 

(l/ho + 4’4 
_ (0, - 00) = 0. (2.8) 

K2 $$ (x,p) - ~42 (x,P) + 00 + 
(l/ho + 11/h + l/h + x - Zllkz) 

Who + h/k1 + l/h + 12 - k/k2 + l/hi) 

(6, - 00) = 0. (2.9) 

Transformed boundary equation 

d& 
kl- (x, P) = ho& (x,P), dx 

x = 0, 

kid; (x, P> = h (82 (x, P> - 01 (x, ~11, x = 11, 

k2 '2 (x,P> = h (02 b, P> - 01 (x,P)), x = 11, 

k2 ‘2 (x, p) = ht ; - 02 (x, p) 
> 

, 

The solution of (2.8) and (2.9) subject to (2.10) through (2.13) is 

x = 12 (2.13) 

01 (x, p) = - ${coshJ($)(h-x)+$sinh,/(k)(h-x)1-- 

- p~~~~~p)(coshhj(~)x+~sinh2/(~)x}{cosh~($-)(l~-l1)+ 

(2.10) 

(2.11) 

(2.12) 

(2.14) 
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&fx,p) = - ~~icush2//~~(I.-.)f~SinhJ(~~(iz-x,!+ 

+ &*2(x) (& - 80) 
~~ 

&.o P 
+;, ll<x<zz (2.15) 

where 

f(p) = 2/p sinh 

g(p) = (P + aoa f ma2) sinh J~~)hsinhJ~~)(f2-h)+ 

+ Y’P (al + ~2) + dp 
i 

~~sinh~(~)hcoshI/(~!~~2-h)+ 

+ 
{ 

2/p (~0 + 4 + l/p aE]cosh~(&)lrsinhJ(&)(/s-Ir)+ 

+ (aoal + aoa2 + aa2) cash J(~ii,coshyl~~)(j2-h). 

ao=ho$$, a-h?, al=h$$, ar=hcF 

RI(X) = l/ho + Xlkl, O<X<Zl 

Rt .2(x) = l/ho + h/k1 + l/h + (x - Z1)/k2, II < x < EI 

Rt .o = l/ho + WI + l/h + (I2 - Id/h + llht 

The solution for the temperature distribution through the cavity walI is obtained from (2.14) 
and (2.15) in the usual way using the inversion theorem. The integrands are single-valued functions 
with simple poles at p = 0, p = - a2,, and at p = - /I:, where a?, n = 1,2, . . . , are the positive 
roots of 

i 
an (al + az) - 

aoaa2 a& 
- 

an I tan 2/-- + 
i; 

a7E (a0 + a) - aoalaz 
tan a7t (I2 - II) 

an ! 1/K2 + 

41 
+ {(aoa + ala2) - a:} tan z tan am (l2 - h> 

z/Kz = aoar + uou2 + a2112 (2.16) 

and/&m= 1,2 ,..., are the positive roots of 

tan &Jr (a0 + a) Pm ~ = ______ ._... _( 

B$ - ma 
(2.17) 
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For the outer leaf, 0 < x < II, t > 0 

m 

RI(~) 
4(x, t) = jjyy 4 + 2al)eo 

c 
x 

m=l 

{cos &x/z/K1 + (ao/&J sin t%x/v’Kl~ (~0s Pm (l2 - h)ldK2 + 

(a2ldK2) sin Pm (1~ - h)/dK2 > exp [-Pit1 + 
Pi kW hw%n~ . vwfd 

co 

2uouuleo x 
c 
?l=l 

{COS GX/~KI + (ao/an)sin anx/dK1} {COS an(l2 - h)/z/Kz + 

(u2idK2) sin an (12 - Id/d&} exp [-$$I 

a", {~(P)>P=-+. 4 (4 
(2.18) 

For the inner leaf, 11 < x < 12, t > 0 

&.2(x) 

OD 
2~o~l~o c @OS an (12 - x)/l/K2 + Cao/an) sin UTZ (Zz - x)/z/Kz> exp [--a”,4 

444 
(2.19 

TL=l 

where, 

*(/L) = Bf, (1 + s + ‘g) sin $$ + -j& (1 - ‘$) cos d$ 

+(a~) = Lb: (~1 + a2) - aoaa23 Z1/v'K1 + (a:(uo + a) - uou1u2} (I2 - Zl)/1/K2] x 

COS anZll~Kl.cOsan(Z2 - Zl)/2/K2 f 

[a, (ao + a) f aoala2/a~ + {an(uou + ~1~2) - a",} Z1/1/Kl + 

an (~0~1 + ~0~2 + aaz)(Z2 - Zl)/l/K2]~0~ a,Zl/l/K~ . sin an (12 - Z1)/1/Kz + 

[%(a1 + a2) + a0Qa2/% + {%a(aoU + UlU2) - ai}(Z2 - Z1)/dK2 f 

an (aoal + ~0~2 + aa2) Zllv'Kl] sina,Zl~~Kl.cos~n(Z2 - Z1)/v'K2 - 

P4 + (4 (ao + 4 - aoa1a2) ZlldKl + {a;(ul + ~2) - uouu2)(Z2 - Z1)/z/K2] x 

sin anZl/z/Kl . sin an (12 - Z1) dK2 (2.20) 

For practical purposes the particular solution 02 (12, t) representing the temperature of the inside 
surface of the wall facing the constant temperature room is the most interesting. From (2.19) 

Rl.2(12) 
e2(z2, t) = Rt ec + 2aodo 

m q exp [-I+] 

> I +(A 
n=1 

(2.21) 
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Numerical calculation of the exact solution (2.21) is lengthy due largely to the labour involved in 
calculating the roots, an, defined by (2.16). An approximate and more easily calculable solution for 
Bs(~s, t) may be obtained by writing g(p) as a polynomial with distinct zeros at p = -ai, -ai, . . ., 
and representing this function as an infinite product of linear factors. The inversion L-i(&(lz, p)} 
then takes the form 

where 

C = aoal + aoa2 + aa + aoaadl/2/Kl + aoam(lz - W/z/& 

Expanding g(p) as a polynomial in p to O(p3) and inverting as indicated the solution for the tempera- 
ture of the inside surface may be written approximately as 

(2.23) 

in which p = -al, -u; are the roots of g(p) expressed simply as a quadratic in p. In general, 
ai 2 af, so that for large values of t equation (2.23) reduces to 

@z(lz, t) ” 
Rl.z(lz) 
-4 + 

aoalBoexp[-u$] 
R, 

2.0 c 

It can be shown that aoal/C simplifies to (1 /hs)/Rt . 0; substituting this equivalent ratio of resistances 
in (2.24) the approximate solution may now be re-written in the more convenient form 

02(12, 0) - 62(12, t> 

00 
N ik(l - exp [-a: t]), t large (2.25) 

Equation (2.25) expresses the drop in the temperature of the inside surface as a fraction of the step- 
function change in the ambient temperature uniformly applied at the outside surface. The quantity 
l/u; will be recognized as the time taken for the fractional change in the surface temperature to 
reach (1 - l/e) or 63 per cent of the ultimate steady state value represented as (l/hi) f&/R5 .o; 
l/a: may be defined therefore as the time-constant of the wall for the problem considered. Writing 
g(p) as a linear function and isolating p it can be shown that 

1pl+ w‘2 

+ Rd.0 1 hiho 
.+!?(;+"I$&)+ 

(2.26) 

where WI, Ws denote the respective heat capacities per unit area of the outer and inner leaves. The 
result in (2.26) is an approximate expression enabling af to be calculated more readily than by 
graphical solution of the transcendental equation (2.15). The accuracy of the approximate method 
may be assessed by comparing numerical results given by (2.24) and the exact solution (2.19). 
Figure 1 shows the result of such a calculation applied to the case of an 11 in cavity wall of brick 
(kl = k2, Kl = I&, 11 = I2 - II, WI = Ws) facing a constant temperature enclosure at the inside 
surface and exposed at the outside surface to a sudden drop through 00 in the ambient temperature. 
After an initial time interval the large difference between the results of the two methods begins to 
decrease and at a value of t equal to the time constant for the cavity wall the approximate solution 
agrees with the exact solution to within about 5 per cent. Thereafter the agreement is close. 
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FIG. 1. Transient cooling of an 11 in cavity brick wall. 

This result is worth consideration as providing possibly a simple method for comparing the transient 
response of different wall structures by calculating the time constant. It may be noted that if the 
boundary condition at the inside surface is changed from constant temperature to constant heat 
flux the time constant for homogeneous and composite structures is simply the ratio (heat stored! 
heat transmitted) in the steady state [7]. 

CONCLUSION 

Analytical solutions have been obtained defining transient and periodic heat flow through walls 
of cavity construction composed of two layers of material of dissimilar thermal properties separated 
by a sealed airspace. The results may be used to calculate the flow of heat through walls naturally 
exposed at one surface and facing a constant ambient temperature at the other. Solutions for homo- 
geneous and two-layer walls are included. The use of these results may perhaps be extended to 
include a three-layer solid wall in which a low thermal capacity slab of highly insulating material is 
sandwiched between dense material. This particular form of wall construction is an important 
feature of current developments in industrialized building. 
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Resume-On calcule les solutions exactes de deux probltmes de flux de chaleur transitoire dam une 
structure de paroi creuse. La premiere considere le flux de chaleur periodique applique comme une 
variation sinusoldale reguliere de la temperature ambiante a la surface exterieure. La seconde examine 
le flux transitoire dans lequel la condition de temperature appliquee est une fonction-echelon unique 
du temps. Dans les deux cas, on suppose que les surfaces exposee ou interieure de la paroi sont en 

contact avec une enceinte a temperature constante. 

Zusammenfassung-Fiir zwei Probleme des instationlren Warmestromes in einer Wand mit rauher 
Oberfllche werden exakte Losungen berechnet. Die erste beriicksichtigt einen periodischen Wlrme- 
Strom, der durch eine regelmassige sinusfiirmige Verlnderung in der Umgebungstemperatur an der 
Aussenoberfllche aufgeprlgt wird. Die zweite untersucht den momentanen Strom, fiir den die 
aufgeprlgte Temperatur eine einzelne Stufenfunktion der Zeit ist. In beiden Fallen wird angenommen, 
dass die gegeniiberliegende bzw. die Innenoberfllche der Wand ein Gebiet konstanter Temperatur 

darstellt. 

AHHoTaqWJr-noxyYeHb1 TOYHbIe PUIIeHLlR J(B)‘X 3aAaV 0 HWTaqllOHapHOM TeIIJIOBOM IlOTOKe 

B CTeHKaX IIOZIOCTM. B IIepBOt paCCMaTpHBEleTCR IIepHOAWECKIf~ TeItJIOBOti IIOTOK, B03- 

HIlKaIolI@ lIpI4 CHHYCOH~a~bHOM 113Mt’Hl?HHII OKpJ?KaIoIQeti TeMIIepaTypbI Ha HapJVKHOti 

IIOBepXHOCTH. Bo BTOpOm PaCCMaTpkIBaeTCR HeyCTElHOBHBIIIHtiCR IIOTOK, KOrJJa Tt?MIIt?paTy&l 

IIpeACTaBJIHeT co6om OAHH CTyIIeH’GiTbIi8 MMIIyJIbC BO BpeMeHH. B 06014~ CJIJWWX IlpeAIIOJIa- 

raerca, ‘IT0 IIPOTI4BOIIOJOlKHafl HJIIl BHJ’TPeHHRH IIOBepXHOCTb CTeHKII HaXOAElTCfl IIpH 

~OCTORI~HO~ TeMnepaType. 


